

Alumina Type ZAL-12

General Information

ZIRCAR Ceramics' Alumina Type ZAL-12 is a low-density, rigid refractory structure, composed of high-alpha polycrystalline alumina fibers and high-purity inorganic binders. ZAL-12 was engineered to deliver the lowest possible density and is manufactured to a tight +/-1.0 pcf density. Despite its very low density, this unique material also exhibits good machineability. ZAL-12 exhibits high electrical resistivity at elevated temperatures and is also very transparent in microwave and RF energy fields. ZAL-12 is pure white and exhibits high reflectance.

ZAL-12 is pre-fired, contains no organic binders and will produce no smoke or odors when heated. ZAL-12 shows excellent resistance to chemical attack and is not affected by oil or water. It is, however, affected by hydrofluoric acid, phosphoric acid and strong alkalis.

Characteristics & Properties

Nominal Composition, wt.%	
Al ₂ O ₃	85
SiO ₂	15
Organic Content	0
Density, g/cc (pcf)	0.19 (12.0)
Maximum Use Temperature*, °C (°F)	
Continuous	1550°C (2822°F)
Intermittent	1600°C (2912°F)
Thermal Shrinkage, volume %	
1 hr. at 1350°C (2462°F)	1.20
1 hr. at 1450°C (2642°F)	2.30
1 hr. at 1550°C (2822°F)	4.00
24 hr. at 1550°C (2822°F)	4.00
Thermal Expansion Coefficient Room temperature to 1000°C (1832°F) [‡]	5.0 x 10-6/°C (2.8 x 10-6/°F)
Permittivity, At Room Temperature [‡] , ε'	
@ 4 GHz	1.22
@ 17 GHz	1.21
Open Porosity, %	94
Specific Heat, J/kg°K (BTU/lb°F)	1047 (0.25)

ZIRCAR Ceramics, Inc.

PO Box 519 100 N. Main St., Florida, NY 10921-0519 Telephone: (845) 651-6600 E-mail: sales@zircarceramics.com Technical Data Bulletin Alumina Type ZAL-12 www.zircarceramics.com Page 1 of 2

Alumina Type ZAL-12

Characteristics & Properties Continued

Compressive Strength, MPa (psi) at 10% Compression,	
Parallel to Formed Thickness	0.15 (21.1)
Perpendicular to Formed Thickness	0.69 (100)
Flexural Strength, MPa (psi)	
Parallel to Formed Thickness	0.83 (120.4)
Perpendicular to Formed Thickness	0.98 (141.9)
Thermal Conductivity**, (ASTM C177-76) W/m-C (BTU-ir	n/hr-ft2-F)
400°C (752°F)	0.13 (0.89)
800°C (1472°F)	0.22 (1.55)
1200°C (2192°F)	0.37 (2.54)
1400°C (2552°F)	0.43 (2.97

The data presented herein is intended to help the user to determine the appropriateness of this material for their application.

This data is a nominal representation of this product's properties and characteristics and therefore should not be used in preparing specifications. * Maximum use temperature is dependent on variables such as stresses, both thermal and mechanical, and the chemical environment that the material experiences. ** Properties expressed parallel to thickness. ‡ Properties expressed perpendicular to thickness.

Suggested Applications

Primary, intermediate and backup thermal insulation in high temperature systems.

Precision-machined thermal insulation in scientific analytical instruments.

Reflector tiles in infrared paper-drying equipment.

Thermal and electrical insulation in high energy microwave and RF systems.

Availability

ZAL-12 is manufactured on a custom basis.

Typical flat boards that are manufactured include 18"W x 24"L x 1"T to 18"W x 24"L x 2"T.

Custom boards in other sizes can also be manufactured.

Custom shapes: Our extensive vacuum forming experience combined with our state-of-the-art tight-tolerance machining techniques allow a wide variety of sizes and shapes to be made.

Surface treatments including rigidization with colloidal alumina (AL-R/H), colloidal silica (SI-RIG) or coating with alumina cement (AL-CEM) are all available.

To Order

Contact ZIRCAR Ceramics, provide drawings or describe requirements and we will provide an offer.

ZIRCAR Ceramics, Inc.

PO Box 519 100 N. Main St., Florida, NY 10921-0519 Telephone: (845) 651-6600 **E-mail: sales@zircarceramics.com** www.zircarceramics.com Revision Date Oct. 9, 2019